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Abstract. We present an implementation of a part-of-speech tagger based on
hidden markov model for Tamil, a relatively free word order, morphologically
productive and agglutinative language. In HMM we assume that probability of
an item in a sequence depends on its immediate predecessor. That is the tag for
the current word depends up on the previous word and its tag. Here in the state
sequence the tags are considered as states and the transition from one state to
another state has a transition probability. The emission probability is the
probability of observing a symbol in a particular state. In achieving this, we use
viterbi algorithm. The basic tag set including the inflection is 53. Tamil being
an agglutinative language, each word has different combinations of tags.
Compound words are also used very often. So, the tagset increases to 350, as
the combinations become high. The training corpus is tagged with the
combination of basic tags and tags for inflection of the word. The evaluation
gives encouraging result.

1 Introduction

Part of speech (POS) tagging is the task of labeling each word in a sentence with its
appropriate syntactic category called part of speech. It is an essential task for all the
language processing activities. There are two factors determining the syntactic
category of a word (a) the words lexical probability (e.g. without context, bank is
more probably a noun than a verb) (b) the words contextual probability (e.g. after a
noun or a pronoun, bank is more a verb than a noun, as in “I bank with HSBC ”).
Hence it disambiguates the part of speech of a word when it occurs in different
contexts. For any POS work the tagset of the language has to be developed. It should
contain the major tags and the morpho-syntactic features called the sub tags.

In this paper we present a POS tagger developed for Tamil using HMM and Viterbi
transition. Tamil is a South Dravidian language, which is relatively free word order,
morphologically productive and agglutinative in nature. It is an old language and most
of the words are built up from roots by following certain patterns and adding suffixes.
Due to the agglutination many combination of words and suffixes occur to form a
single word whose POS is a combination of all the suffixed words or suffixes. Hence
the total number of tagset increases as the combination increases. In this work we
confine to a fixed set of tagset, which gives the most commonly needed tags for any
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computational purposes. The paper’s schema is as follows. The second section
discusses about the different techniques used for POS tagging. Third section explains
the tagset and the architecture of the system developed and the fourth section
discusses the implementation details. The results are discussed in the next section (5)
and the sixth section concludes the paper.

2  Tagging Techniques

Many techniques have been used for developing POS taggers. The different
techniques are (1) Rule-based (2) Transformation Based and (3) statistical based.
Each technique has its own merits and demerits.

The first technique to be developed was the rule-based tagger. These taggers used
context sensitive rules in getting the correct tag. Among the rule-based approaches
the one that achieved the best accuracy is 97.5%[1]. These taggers are based on a
defined set of hand written rules. Most of the existing Rule Based POS taggers are
based on two-stage architecture. The first stage assigns a list of probable tags (or the
basic tag) for a particular word. The second stage uses the list of disambiguation
rules, to reduce the list (or change a wrong tag) to a single right tag. The Brill’s tagger
initially tags a sentence by assigning each word its most likely tag, and then that is
tagged according to context information at the second stage [2]. Here all the rules are
pre-defined. The rules can be broadly classified in to two (1) Lexical Rules and (2)
Context Sensitive Rules. The lexical rules act at the word level. The context sensitive
rules act at the sentence level.

The rule-based taggers are developed for European languages. In Indian languages
a rule-based POS tagger for Tamil was developed and tested [3]. It uses a suffix
stripper to get the root word and no dictionary is used. The tagger tags the major tags
(N, V, etc) of the root word. For Example, The word patikkira:n
“reading+m-+sng+3p” can be split in to pati “Read” V + kkir Pres + a:n Sng.M.3P.
The tag for the root word pati cannot be identified without a dictionary. But from the
suffixes it takes it could be identified whether it is a noun or a verb.. Here in this
example, using the tense marker and GNP marker, the root word can be assumed as a
verb. This is done in the word level. If there is any ambiguity, the word is left
unknown. And it is resolved in the next step — context level. There are nearly 90
lexical rules and nearly 7 context sensitive rules, which are hand crafted. The
precision of the system is 92%. This system gives only the major tags and the sub tags
are overlooked while evaluation. Tagging becomes difficult when there is no
inflection in the word. When the sub tags are considered the performance is reduced.

Transformation Based Learning method is an approach in which the rule-based and

the stochastic methods are combined and used. Like the rule-based taggers, this is
based on rules, which say what tag to be assigned to what words. And like the
stochastic taggers, this is a (supervised) machine learning technique, in which the
rules are automatically derived from the (pre tagged) training data. And those rules
are applied to the test corpus. There are various algorithms, which are used for
learning purpose. The most commonly used Brill’s tagger [4, 5] (for English) is @
TBL based tagger. Brill’s algorithm has three major stages. In first stage, it Jabels
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every word with the most likely tag. In second stage, it examines all the possible
transformations and selects the one, which gives the most improved tagging. The
stage two requires that the TBL algorithm knows the correct tag for each word. That
is the TBL is a supervised learning algorithm [1]. The output of a TBL process is a
list of transformations. The transformation consists of two parts: A triggering
environment and a rewrite rule. Then the third stage - it re-tags the data according to
the rule. These three steps are repeated till some threshold condition reaches. The
accuracy of the tagger depends upon the training corpus and the set of rules. Apart
from Brill’s tagger, the fn-TBL [6] toolkit and mu-tbl [7] tool uses TBL for tagging
English sentences. These are trained for English and also for other European
languages.

The POS taggers are developed using statistical method. This is based on
probability measures. Generally this needs a tagged corpus for training. The training
corpus is a tagged corpus, which is assumed to be 100% correct. The probabilities are
calculated using unigram, bigram, trigram, and n-gram methods [8]. Unigram
Probability is the probability of a word to occur in a corpus. The Bigram model
calculates the probability of a word, given the previous word. By definition, the
bigram model approximates the probability of a word given all the previous words, by
the conditional probability of the preceding word. Here an assumption is made that
the probability of a word depends only on the previous word. This is called Markov
assumption. Bigram model is called the first order Markov model, trigram is called
the second order Markov model and an N-gram model is called the N-1" Markov
model. In developing a POS tagger, the tags are called states in the Markov model and
the the words are called the symbols. When N=2, this is generally called a Hidden
Markov Model as the information about the previous states are hidden. Viterbi
algorithm is a dynamic programming algorithm for finding the most likely sequence
of hidden states, known as the Viterbi path.

For many morphologically rich languages like Japanese and Arabic, viterbi
algorithm is used for tagging and disambiguation [9, 10]. The Arabic POS tagger
achieved an accuracy of around 90% when disambiguating ambiguous words. But
unknown words are tagged as nouns because the tagged training corpus had 67% of
nouns [10]. Also for languages like Chinese and Japanese the word segmentation
itself becomes a problem because of the nature of the language. Still Chinese part of-
speech tagging using a first-order fully connected hidden Markov model gives
promising results [11].

Regardless of whether one is using HMMSs, maximum entropy conditional
sequence models, or other techniques like decision trees, most systems work in one
direction through the sequence (normally left to right, but occasionally right to left).
Most of the well-known and most successful approaches are unidirectional [12].

2.1 Tamil Tagset

As Tamil is an agglutinative language, each word has different combinations of tags.
Here we have 17 basic tags and 31 sub tags. Compound words are very common in
this language. So the word will have the combination of basic tags and tags for
inflection. Thus we have 350 unique tagset for the training data. The nouns take the
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case markers and plural markers and verbs take perfect, imperfect, imperative, persop,
number, gender and tense markings. Other than this, pronouns have person numbe,
and gender and also the clitics which are suffixed to the root word to form adverbs,
conjunctions etc. The dates, numbers and punctuations are also tagged separately. The
tags we use are not monadic tags but structured tags such as <N+PI+ACC>. Thjg
representation is required for further syntactic analysis because different pieces of
information in the tag serve different roles in the syntactic representation. The
representation is given below:

avan  kataikku cenRu maruntukaLai va:nkina:n
He shop (DAT) go (VBP)  medicine (PL+ACC) buy (PST+3SM)

avan/PR+3SM kataikku/N+DAT cenRu/V+VBP maruntukalailN+PL+ACC
va:nkina:n/ V+PST+3SM

(He went to the shop and bought medicines.)

The main tags and the sub tags, which can occur with the main tag, are given in
Tables 1 and 2.

Table 1. Main tags.

Main Tag Representation
I Noun N
2 Verb \Y
3 Adjective ADJ
4  Adverb ADV
5  Verbal Participle VBP
6  Relative Participle AJP
7  Quantifier Q
8  Conjunction CNJ
9  Punctuation PNC
10 Indeclinable IND
11 Interrogative INT
12 Ordinal ORD
13 Pronoun PR
14 Verbal Noun VBN
15 Determiner DET
16 Symbol SYM
17 Unknown UNK

2.2 Agglutinating Nature of the Language

In this‘scction', we give a detailed description of the agglutinating nature of Tamil, and
how dlf_ﬁcult is to analyze the inflected/compound words. The grammatical propel'tieS
of Tamil comprise both morphological and syntactic categories. Generally the main

parts of speech in modern Tamil can be distinguished into three morphological word
classes as Nouns, Verbs and Uninflected words.
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Table 2. Sub tags

Represen- Represen-
subtag tation Subtag tation

2" person, Plural, 12 Clitic CLT

1 2PN
Neuter gender 13 Compound COMP

2 2"person, Singular, 14  Conditional  CND
Honorific 15 Dative DAT
2" person, Singular, 16  Emphatic EMP

3 g 2SM
Masculine 17  Future Tense  FUT
2" person, Singular, 18  Genitive GEN

4 2SN :
Neuter gender 19 Hortative HRT
3" person, Plural, 20  Imperative IMP

5 3PN :
Neuter gender 21  Inclusive INC

6 3" person, Singular, 3SF 22 Infinitive INF
Feminine 23 Instrumental INS
3" person, Singular, 24 Locative LOC

7 p 3SH = !
Honorific 25  Negative NEG

8 30 person, Singular, 3SM 26  Past Tense PST
Masculine 27  Plural PL

9 3" person, Singular, 38N 28  Post Position PSP
Neuter Gender 29  Present Tense PRE

10  Ablative ABL 30 Representative REP

11 Accusative ACC 31  Sociative SOC

Words in Tamil can be segmentized in to a sequence of parts called morphemes.
Thus Tamil morphology can be characterized as agglutinating or concatenative [13].
This can be represented as follows.

Stem (+ affix)"

Where the superscript n means one or more occurrences of suffixes. When morphs
are serialized as suffixes at the right end of a word stem, inflected or derived words
are formed. For example, an inflected noun consists of a noun stem followed by a
plural suffix and/or a case suffix:

“vltukaLil* = vitu + kal + il =house + PL + LOC =*in the houses”.
An inflected verb consists of a verb stem followed by a tense and PNG marker.
“vantAn> = va + nt + An = come+ PST + 3SM = *“he came .

Apart from the inflection of stems, there can be oblique stems occurring with case
suffixes, postpositions etc. when words are concatenating, to form a single compound
word, almost all the combinations are valid. The most common rules for
concatenation are, Noun stem + head noun, oblique stem + case suffix, Noun + Verb,
Verb + Verb, Determiner + Noun, Adverb + Verb, Derived noun, Derived verb,
{Noun, Verb, Adjective, Adverb} + Postposition, verbal participle+ verb, Adjectival
participle + Postposition, Adverb + Verb + Postposition etc. Few examples are given
below:
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Rule |: Noun stem + head noun

talaimuti = talai + muti = head hair = “hair of the head”
Rule 2: oblique stem + case suffix

cnakku = nAn (obl)v ku = 1(obl) + dat =*tome”
Rule 3: Noun + Verb

kaivaikAte = kai + vai+Ate = hand + put + (neg) = **do not put
(your) hand”
Rule 4: Verh + Verb
cAppitamutiyum - cAppita + mutiyum = eat+ can do = ‘“can eat”
Depending on the position of suffixes, when it is added to words, same suffix may
sive different meaning at different places. For example, the suffix “um” when added
to a4 noun, it is an inclusive marker. When it is added to verb, that indicates third
person singular neuter gender. Another example would be postpositions. They can
wtaned-alone. add as a suffix of a word or it can occur between two words as a glue and
make a compound word. Few examples are given below

Svntapint AnenRu” - vanta bopin +tAn 4 enRu = “only after (somebody) came”

AP PSP EMP 1 IND

AARRivahtceevt™  KARRu + vazhi + ceyti = “news by word of mouth™ =N +
PSP o N

crahhumun ™ enakku t mun - “before me” = N(DAT) + PSP

polave™ = polat ¢ “like that™ = PSP + EMP

hus, the concatenative nature of the language makes the POS tagging task more
dithicult There are number of words which have the same spelling and act as different
part of speech masentence

txample:

i acts as a quantifier (two) and as a verb (be there)
pittkkum acts as an RP and as a verb.
inoodh acts as a noun and verb.

Pamil s a relatively free word order language where the constituents in 3
sentence coukd be rearranged in all possible combinations without altering the
neamne. The following example shows this natre of Tamil.

Example:

“He hit the ball with a bat™ can be written in different ways,
a  avar pantai mattatAl atittAn
b pantar avan mattaiAl atittAn
¢ avan mattaiAl pantai atittAn
d  mattaiAl avan pantai atittAn

¢ “avan attAn pantai mattaidl
The sentence "¢ Is not a grammatical sentence in Tamil, since it is not verd
ending Handling of the tagging process for Tamil is explained in the next section.
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3 The POS Tagger

The system has two major modules, where the first module is for building the
language model and the second for finding out the viterbi tag sequence for a given
sentence. The training corpus is assumed to be 100% correct. The training corpus
consists of 25000 tagged words, which are tagged by a rule-based tagger and then
manually checked and corrected.

The training corpus is given to the training module and the initial matrices for the
viterbi algorithm are built. There are 3 matrices built by this module - initial state
probability matrix (m), transition probability matrix (A) and emission probability
matrix (B). Then a language model (A) is built using the formula,

A=(A.B,n)

The second module is the actual viterbi algorithm, which finds out the most likely tag
sequence for a given sentence. The input sentence is given to this module and the
output is the tagged sentence. How viterbi algorithm works for tagging a sentence is
explained as follows.

Probability of item in sequence depends on its immediate predecessor. That is the
tag for the current word depends up on the previous word and its tag. Here in the state
sequence the tags are considered as states and the transition from one state to another
state has a transition probability. The emission probability is the probability of
observing a symbol in a particular state. Here in the POS tagger application words are
considered as symbols and the tags are considered as states.

Training of the system using tagged Tamil corpus and using it for tagging a new
unseen sentence is explained in section 4. As Tamil is an agglutinative language, each
word may have different combinations of tags. Compound words are also used very
often. The training corpus is tagged with the basic tag and the tags for the inflection of
the word. Implementation of the modules and tagging a new corpus using the system
are explained in detail in the following sub sections.

3.1 System Implementation

The system is implemented using the concept of HMM and Viterbi transitions.
Hidden Markov Model (HMM) is a statistical method, which can be used for Natural
Language Processing Tasks like Parts of Speech tagger, Information Extraction etc.
Using HMM an attempt is made to build a Language model, such that the system (or
the computer) can be trained to work similar to humans for processing natural
languages like English, Tamil etc.

There are some basic assumptions made when HMM is modelled for natural
language texts. First assumption is that Language is a Markov Process with unknown
parameters or hidden states and we have to determine the hidden parameters with the
use of observable output parameters. In a Markov model there are no hidden
parameters all the parameters are observable.

There are 3 canonical problems to solve with HMMs:
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1)  Given the model parameters, compute the probability of a particular
output sequence. Solved by the forward algorithm.

2)  Given the model parameters, find the most likely sequence of (hidden)
states which could have generated a given output sequence. Solved by the
Viterbi algorithm.

3)  Given an output sequence, find the most likely set of state transition and
output probabilities. Solved by the Baum-Welch algorithm.

In constructing HMM for language model, we have to determine what are the
states or parameters in the model and what they correspond to and how many total
numbers of states are possible in the model. Prior to building of HMM, a state table
has to be constructed. Once the state table is prepared and annotated training text is
available we can build HMM model.

The HMM model (A) is given by

A=(A,B,m) Q)

Here A. B, and = are the probability measures used for modeling. Let us say there
are N, distinct states and states denoted as S, Sa,.....,.Sn. And M number of distinct
output symbols per state and denoted by V), V... Vy. If we denote a state at time ¢ as
q.then A is the state transition probability distribution.

a; =P [qw | q] ()
B is the observation symbol probability distribution in state j, B={b;(k)} where
b(k)=P[Viatt|qt=Sj] 1<j<N 3)
1<k<M

7 is the initial state distribution where
7 =P[q=S] I<i<N (C))

After calculating the initial state distribution, Viterbi algorithm can be
implemented for finding out the hidden sequence of states for a particular input
sentence. In this algorithm the following assumptions are made. First, both the
observed events and hidden events must be in a sequence. This sequence often
corresponds to time. Second, these two sequences need to be aligned, and an observed
event needs to correspond to exactly one hidden event. Third, computing the most
likely hidden sequence up to a certain point t must depend only on the observed event
at point t, and the most likely sequence at point t — 1. These assumptions are all
satisfied in a first-order hidden Markov model. What the algorithm does only is it tries
to give the best possible solution. The difficulty lies in setting the optimal criteria for
choosing the path. There are several possible optimal criteria’s, which can be set. In
Viterbi algorithm a single best state sequence is given as output. Here we find the
path that maximizes the observations given the HMM model.

The formal algorithm consists of 5 steps. First step initializes the first column using
the initial state vector and the first observation. Next is the recursion step, which gives
the i-th element of the t-th column, which is the probability of the most likely way ©
being in that position, given events at time t-1. The back pointer indicates where on¢
is most likely to have come from at time t-1 if currently in state i at time t. next step 1%
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termination. It indicates what the most likely state is at time T, given the preceding T-
1 states and the observations. Fifth step traces the back pointers through the lattice,
initializing from the most likely final state. Using backtracking, we find the most
likely tag sequence determined by the Viterbi algorithm. How a new sentence
assigned the most likely tag sequence is explained below.

Here we assume each tag of POS as a state. The words in the text are assumed to
be as observable symbols or tokens. If there is large enough text corpus, which
contains of all possible sentence structures of the language then using HMM we can
build a very robust language model for this task.

The initial state probability distribution (1) is constructed by finding the ratio of
the count of each states occurring in the first position of the sentence to the total
number of sentences. For example if state S1 has occurred n times as the first state of
sentence in the corpus and if there are X number of sentences in the corpus then initial
state probability for state S1 is given as (n/X). We similarly find for all states in the
model and an initial state probability distribution is built.

The transition state probability distribution is nothing but the states bigram
frequency. Or we can say it is the probability of state Si to transit to state Sj.

The observation symbol probability distribution or simply called emission
probability is the probability of an output symbol Vk to occur in given particular state
Si. That is probability for a word to have a particular tag.

Once these three (A, B, n) model parameters are found we use Viterbi transitions
to find the best path for a given sequence of output symbols (i.c., a test sentence).

The training corpus is tagged by a rule-based system [3] and manually corrected.
The tag for each word is a combination of basic tags and the tag for inflection.

Example 1:

the word payanpatukinRana - “they are useful” is tagged as “V+PRE+3PN”.
That is, this word is formed with, “payanpatu+kinRu+ana”

payanpatu “are useful” — Verb (V)

kinRu — Present tense (PRE)

ana -3" person, Plural, Neuter Gender (3PN)

The final output of the tagger is V+PRE+3PN

Example 2:

The word immaruntukal “the medicines” - is tagged as “N+COMP”
This compound word is formed with, “i+maruntu+kal.”

i (inta) “this” — Determiner (DET)

maruntu “medicine” — Noun (N)

kaL — Plural (PL)

When the combination of the basic tag increases, the tagset for viterbi increases.
This leads to sparse data problem [14]. To avoid this problem, we reduce certain
combination of tags to a single tag “COMP”.

Using the training corpus, the initial state matrix, transition and emission
probability matrices are calculated and the language model is built. There are many
paths in an HMM with S states. We try to find the path that maximizes the
observations given the HMM model [15].
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As the corpus is initially tagged using a rule-based system and corrected, it takes
care of the inflection to some level reducing the manual work, though compounding is
not dealt in detail.

4 Results and discussion

The system is tested against a data set of 5000 words. The system performs well and
gives a high precision and recall. Three different sets of test data are tagged and
evaluated. These sets are from different domains given below.

Set 1 — Recipes
Set 2 — Veterinary Diseases
Set 3 - Historical Events

Three different types of data are taken because the constituents in a sentence are
different in different domains. In recipes, multiple proper nouns occur continuously,
separated by a punctuation mark. They are written in a step-by-step manner and most
of the sentences are imperative. Whereas in veterinary diseases, there are considerable
number of foreign words, transliterated medicine names etc and the format in which
the text is written, mostly resembles textbooks. In historical domain, the paragraphs
are highly related to each other and it is written like a story. Here, we come across
many classical words from ancient Tamil. There are many compound words. Three
sets of data containing 1565, 1810 and 1616 words are taken from the above domains
for evaluation and the precision and recall is calculated. The precision for the 3 sets is
98.43% and the recall is 98.43%. The evaluation results are given in Table 1.

Table 3. Evaluation Results

Title No. Of Words Words tagged Correctly Tagged Precision _Recall

Set 1 1565 1565 1544 98.7%  98.7%
Set 2 1810 1810 1779 98.3%  98.3%
Set 3 1616 1616 1589 98.3%  98.3%

An advantage in using viterbi algorithm is the system is not influenced by small
errors. For example,

enna - “what”

Here, the actual tag for this is “INT” but in the manually tagged corpus, it W3S
wrongly tagged as “IND™ at one place. But that is not carried to the output. Even if
there is a small typological error in the tagged corpus, which changes the tag itself,
the machine tagged output is correct. Even if there is an unseen word, the system tri¢s
to find out the tag for that word depending on the context. This does not need 3"
exhaustive set of rules. As the training corpus increases, the system becomes robust-
As Tamil is an agglutinative language, each word may have different combination
of tags. Compound words are also used very often. The training corpus is tagged with
the combination of basic tags and tags for inflection of the word. So, the tagse!
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increases to 350, as the combinations become high. The basic tag set including the
inflection is 53.

[f any unseen word (which does not occur in the training corpus) occurs in the test
corpus, the emission probability of the word becomes zero. But when viterbi
algorithm is implemented, it tries to assume the tag for the unseen word depending on
the previous sequence of words. It explores all possible states for emitting the word. If
no tags are occurring after a particular tag, transition probability of that particular tag
becomes zero and there are no probable states after that. In that case, the whole
sentence is not tagged because the total probability becomes zero. When there is a
very small probability especially for special characters, the transition probability
becomes insignificant and it becomes zero, leading to the total probability to be zero.
When the insignificant output symbols such as “;”, “I”, etc. occurs in between a
sentence, the above-mentioned problem is faced.

Some of the sentences are not tagged because at some point for an unseen word, no
transition may be possible from the current state. So, no tags are assigned. Some
words are assigned wrong tags, because transition or emission probability is wrongly
calculated. This is because some forms of words do not occur in the training corpus
and the test corpus has those forms. So, there is a high probability of assigning a
wrong tag to those particular words. For example,

a. the word * eRiya” which means, “to throw” is tagged as “ADJ” by the machine.
But the actual tag for this is “ADV”.

b. the word irukkum which means “will be there” is tagged as V+FUT+3SN. But
the actual tag for this in that particular sentence is “V+AJP”.

S Conclusion

In this paper we have discussed a statistical part of speech tagger for Tamil which is
developed as a module in the Tamil- English Machine Translation system. In arriving
at the POS tagger we use HMM and Viterbi algorithm for tagging a new corpus. The
system performs well with high precision and recall. HMM emission probability for
an unknown word is calculated depending on the word order. As Tamil is a relatively
free word order language and morphologically rich, there is always a high probability
for an unseen word to occur. So the precision may vary according to the training
corpus. The system can be made more reliable and robust when trained with a bigger
corpus, which contains all types of words and its combinations equally distributed. A
high precision morphological analyzer is not needed in HMM; instead a compound
word analyzer will improve the performance considerably. Another advantage in this
system is even if there is any man made mistake in the training corpus, that is not
carried to the output. This POS tagging task for Tamil is useful and it plays a vital
role in language processing activities like information extraction, machine translation

etc. from Tamil to other languages.
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